Config
¶
dreem.io.Config
¶
Class handling loading components based on config params.
Source code in dreem/io/config.py
class Config:
"""Class handling loading components based on config params."""
def __init__(self, cfg: DictConfig, params_cfg: DictConfig = None):
"""Initialize the class with config from hydra/omega conf.
First uses `base_param` file then overwrites with specific `params_config`.
Args:
cfg: The `DictConfig` containing all the hyperparameters needed for
training/evaluation.
params_cfg: The `DictConfig` containing subset of hyperparameters to override.
training/evaluation
"""
base_cfg = cfg
print(f"Base Config: {cfg}")
if "params_config" in cfg:
params_cfg = OmegaConf.load(cfg.params_config)
if params_cfg:
pprint(f"Overwriting base config with {params_cfg}")
with open_dict(base_cfg):
self.cfg = OmegaConf.merge(base_cfg, params_cfg) # merge configs
else:
self.cfg = cfg
def __repr__(self):
"""Object representation of config class."""
return f"Config({self.cfg})"
def __str__(self):
"""Return a string representation of config class."""
return f"Config({self.cfg})"
@classmethod
def from_yaml(cls, base_cfg_path: str, params_cfg_path: str = None) -> None:
"""Load config directly from yaml.
Args:
base_cfg_path: path to base config file.
params_cfg_path: path to override params.
"""
base_cfg = OmegaConf.load(base_cfg_path)
params_cfg = OmegaConf.load(params_cfg_path) if params_cfg else None
return cls(base_cfg, params_cfg)
def set_hparams(self, hparams: dict) -> bool:
"""Setter function for overwriting specific hparams.
Useful for changing 1 or 2 hyperparameters such as dataset.
Args:
hparams: A dict containing the hyperparameter to be overwritten and
the value to be changed
Returns:
`True` if config is successfully updated, `False` otherwise
"""
if hparams == {} or hparams is None:
print("Nothing to update!")
return False
for hparam, val in hparams.items():
try:
OmegaConf.update(self.cfg, hparam, val)
except Exception as e:
print(f"Failed to update {hparam} to {val} due to {e}")
return False
return True
def get_model(self) -> "GlobalTrackingTransformer":
"""Getter for gtr model.
Returns:
A global tracking transformer with parameters indicated by cfg
"""
from dreem.models import GlobalTrackingTransformer
model_params = self.cfg.model
ckpt_path = model_params.pop("ckpt_path", None)
if ckpt_path is not None and len(ckpt_path) > 0:
return GTRRunner.load_from_checkpoint(ckpt_path).model
return GlobalTrackingTransformer(**model_params)
def get_tracker_cfg(self) -> dict:
"""Getter for tracker config params.
Returns:
A dict containing the init params for `Tracker`.
"""
tracker_params = self.cfg.tracker
tracker_cfg = {}
for key, val in tracker_params.items():
tracker_cfg[key] = val
return tracker_cfg
def get_gtr_runner(self) -> "GTRRunner":
"""Get lightning module for training, validation, and inference."""
from dreem.models import GTRRunner
tracker_params = self.cfg.tracker
optimizer_params = self.cfg.optimizer
scheduler_params = self.cfg.scheduler
loss_params = self.cfg.loss
gtr_runner_params = self.cfg.runner
model_params = self.cfg.model
ckpt_path = model_params.pop("ckpt_path", None)
if ckpt_path is not None and ckpt_path != "":
model = GTRRunner.load_from_checkpoint(
ckpt_path,
tracker_cfg=tracker_params,
train_metrics=self.cfg.runner.metrics.train,
val_metrics=self.cfg.runner.metrics.val,
test_metrics=self.cfg.runner.metrics.test,
)
else:
model = GTRRunner(
model_params,
tracker_params,
loss_params,
optimizer_params,
scheduler_params,
**gtr_runner_params,
)
return model
def get_data_paths(self, data_cfg: dict) -> tuple[list[str], list[str]]:
"""Get file paths from directory.
Args:
data_cfg: Config for the dataset containing "dir" key.
Returns:
lists of labels file paths and video file paths respectively
"""
dir_cfg = data_cfg.pop("dir", None)
if dir_cfg:
labels_suff = dir_cfg.labels_suffix
vid_suff = dir_cfg.vid_suffix
labels_path = f"{dir_cfg.path}/*{labels_suff}"
vid_path = f"{dir_cfg.path}/*{vid_suff}"
print(f"Searching for labels matching {labels_path}")
label_files = glob.glob(labels_path)
print(f"Searching for videos matching {vid_path}")
vid_files = glob.glob(vid_path)
print(f"Found {len(label_files)} labels and {len(vid_files)} videos")
return label_files, vid_files
return None, None
def get_dataset(
self, mode: str
) -> Union["SleapDataset", "MicroscopyDataset", "CellTrackingDataset"]:
"""Getter for datasets.
Args:
mode: [None, "train", "test", "val"]. Indicates whether to use
train, val, or test params for dataset
Returns:
Either a `SleapDataset` or `MicroscopyDataset` with params indicated by cfg
"""
from dreem.datasets import MicroscopyDataset, SleapDataset, CellTrackingDataset
if mode.lower() == "train":
dataset_params = self.cfg.dataset.train_dataset
elif mode.lower() == "val":
dataset_params = self.cfg.dataset.val_dataset
elif mode.lower() == "test":
dataset_params = self.cfg.dataset.test_dataset
else:
raise ValueError(
"`mode` must be one of ['train', 'val','test'], not '{mode}'"
)
label_files, vid_files = self.get_data_paths(dataset_params)
# todo: handle this better
if "slp_files" in dataset_params:
if label_files is not None:
dataset_params.slp_files = label_files
if vid_files is not None:
dataset_params.video_files = vid_files
return SleapDataset(**dataset_params)
elif "tracks" in dataset_params or "source" in dataset_params:
if label_files is not None:
dataset_params.tracks = label_files
if vid_files is not None:
dataset_params.video_files = vid_files
return MicroscopyDataset(**dataset_params)
elif "raw_images" in dataset_params:
if label_files is not None:
dataset_params.gt_images = label_files
if vid_files is not None:
dataset_params.raw_images = vid_files
return CellTrackingDataset(**dataset_params)
# todo: handle this better
if "slp_files" in dataset_params:
return SleapDataset(**dataset_params)
elif "tracks" in dataset_params or "source" in dataset_params:
return MicroscopyDataset(**dataset_params)
elif "raw_images" in dataset_params:
return CellTrackingDataset(**dataset_params)
else:
raise ValueError(
"Could not resolve dataset type from Config! Please include \
either `slp_files` or `tracks`/`source`"
)
def get_dataloader(
self,
dataset: Union["SleapDataset", "MicroscopyDataset", "CellTrackingDataset"],
mode: str,
) -> torch.utils.data.DataLoader:
"""Getter for dataloader.
Args:
dataset: the Sleap or Microscopy Dataset used to initialize the dataloader
mode: either ["train", "val", or "test"] indicates which dataset
config to use
Returns:
A torch dataloader for `dataset` with parameters configured as specified
"""
if mode.lower() == "train":
dataloader_params = self.cfg.dataloader.train_dataloader
elif mode.lower() == "val":
dataloader_params = self.cfg.dataloader.val_dataloader
elif mode.lower() == "test":
dataloader_params = self.cfg.dataloader.test_dataloader
else:
raise ValueError(
"`mode` must be one of ['train', 'val','test'], not '{mode}'"
)
if dataloader_params.num_workers > 0:
# prevent too many open files error
pin_memory = True
torch.multiprocessing.set_sharing_strategy("file_system")
else:
pin_memory = False
return torch.utils.data.DataLoader(
dataset=dataset,
batch_size=1,
pin_memory=pin_memory,
collate_fn=dataset.no_batching_fn,
**dataloader_params,
)
def get_optimizer(self, params: Iterable) -> torch.optim.Optimizer:
"""Getter for optimizer.
Args:
params: iterable of model parameters to optimize or dicts defining
parameter groups
Returns:
A torch Optimizer with specified params
"""
from dreem.models.model_utils import init_optimizer
optimizer_params = self.cfg.optimizer
return init_optimizer(params, optimizer_params)
def get_scheduler(
self, optimizer: torch.optim.Optimizer
) -> torch.optim.lr_scheduler.LRScheduler:
"""Getter for lr scheduler.
Args:
optimizer: The optimizer to wrap the scheduler around
Returns:
A torch learning rate scheduler with specified params
"""
from dreem.models.model_utils import init_scheduler
lr_scheduler_params = self.cfg.scheduler
return init_scheduler(optimizer, lr_scheduler_params)
def get_loss(self) -> "dreem.training.losses.AssoLoss":
"""Getter for loss functions.
Returns:
An AssoLoss with specified params
"""
from dreem.training.losses import AssoLoss
loss_params = self.cfg.loss
return AssoLoss(**loss_params)
def get_logger(self) -> pl.loggers.Logger:
"""Getter for logging callback.
Returns:
A Logger with specified params
"""
from dreem.models.model_utils import init_logger
logger_params = OmegaConf.to_container(self.cfg.logging, resolve=True)
return init_logger(
logger_params, OmegaConf.to_container(self.cfg, resolve=True)
)
def get_early_stopping(self) -> pl.callbacks.EarlyStopping:
"""Getter for lightning early stopping callback.
Returns:
A lightning early stopping callback with specified params
"""
early_stopping_params = self.cfg.early_stopping
return pl.callbacks.EarlyStopping(**early_stopping_params)
def get_checkpointing(self) -> pl.callbacks.ModelCheckpoint:
"""Getter for lightning checkpointing callback.
Returns:
A lightning checkpointing callback with specified params
"""
# convert to dict to enable extracting/removing params
checkpoint_params = OmegaConf.to_container(self.cfg.checkpointing, resolve=True)
logging_params = self.cfg.logging
if "dirpath" not in checkpoint_params or checkpoint_params["dirpath"] is None:
if "group" in logging_params:
dirpath = f"./models/{logging_params.group}/{logging_params.name}"
else:
dirpath = f"./models/{logging_params.name}"
else:
dirpath = checkpoint_params["dirpath"]
dirpath = Path(dirpath).resolve()
if not Path(dirpath).exists():
try:
Path(dirpath).mkdir(parents=True, exist_ok=True)
except OSError as e:
print(
f"Cannot create a new folder. Check the permissions to the given Checkpoint directory. \n {e}"
)
_ = checkpoint_params.pop("dirpath")
checkpointers = []
monitor = checkpoint_params.pop("monitor")
for metric in monitor:
checkpointer = pl.callbacks.ModelCheckpoint(
monitor=metric,
dirpath=dirpath,
filename=f"{{epoch}}-{{{metric}}}",
**checkpoint_params,
)
checkpointer.CHECKPOINT_NAME_LAST = f"{{epoch}}-best-{{{metric}}}"
checkpointers.append(checkpointer)
return checkpointers
def get_trainer(
self,
callbacks: list[pl.callbacks.Callback] = None,
logger: pl.loggers.WandbLogger = None,
devices: int = 1,
accelerator: str = "auto",
) -> pl.Trainer:
"""Getter for the lightning trainer.
Args:
callbacks: a list of lightning callbacks preconfigured to be used
for training
logger: the Wandb logger used for logging during training
devices: The number of gpus to be used. 0 means cpu
accelerator: either "gpu" or "cpu" specifies which device to use
Returns:
A lightning Trainer with specified params
"""
if "trainer" in self.cfg:
trainer_params = self.cfg.trainer
else:
trainer_params = {}
profiler = trainer_params.pop("profiler", None)
if "profiler":
profiler = pl.profilers.AdvancedProfiler(filename="profile.txt")
else:
profiler = None
if "accelerator" not in trainer_params:
trainer_params["accelerator"] = accelerator
if "devices" not in trainer_params:
trainer_params["devices"] = devices
return pl.Trainer(
callbacks=callbacks,
logger=logger,
profiler=profiler,
**trainer_params,
)
__init__(cfg, params_cfg=None)
¶
Initialize the class with config from hydra/omega conf.
First uses base_param
file then overwrites with specific params_config
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg |
DictConfig
|
The |
required |
params_cfg |
DictConfig
|
The |
None
|
Source code in dreem/io/config.py
def __init__(self, cfg: DictConfig, params_cfg: DictConfig = None):
"""Initialize the class with config from hydra/omega conf.
First uses `base_param` file then overwrites with specific `params_config`.
Args:
cfg: The `DictConfig` containing all the hyperparameters needed for
training/evaluation.
params_cfg: The `DictConfig` containing subset of hyperparameters to override.
training/evaluation
"""
base_cfg = cfg
print(f"Base Config: {cfg}")
if "params_config" in cfg:
params_cfg = OmegaConf.load(cfg.params_config)
if params_cfg:
pprint(f"Overwriting base config with {params_cfg}")
with open_dict(base_cfg):
self.cfg = OmegaConf.merge(base_cfg, params_cfg) # merge configs
else:
self.cfg = cfg
__repr__()
¶
__str__()
¶
from_yaml(base_cfg_path, params_cfg_path=None)
classmethod
¶
Load config directly from yaml.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_cfg_path |
str
|
path to base config file. |
required |
params_cfg_path |
str
|
path to override params. |
None
|
Source code in dreem/io/config.py
@classmethod
def from_yaml(cls, base_cfg_path: str, params_cfg_path: str = None) -> None:
"""Load config directly from yaml.
Args:
base_cfg_path: path to base config file.
params_cfg_path: path to override params.
"""
base_cfg = OmegaConf.load(base_cfg_path)
params_cfg = OmegaConf.load(params_cfg_path) if params_cfg else None
return cls(base_cfg, params_cfg)
get_checkpointing()
¶
Getter for lightning checkpointing callback.
Returns:
Type | Description |
---|---|
ModelCheckpoint
|
A lightning checkpointing callback with specified params |
Source code in dreem/io/config.py
def get_checkpointing(self) -> pl.callbacks.ModelCheckpoint:
"""Getter for lightning checkpointing callback.
Returns:
A lightning checkpointing callback with specified params
"""
# convert to dict to enable extracting/removing params
checkpoint_params = OmegaConf.to_container(self.cfg.checkpointing, resolve=True)
logging_params = self.cfg.logging
if "dirpath" not in checkpoint_params or checkpoint_params["dirpath"] is None:
if "group" in logging_params:
dirpath = f"./models/{logging_params.group}/{logging_params.name}"
else:
dirpath = f"./models/{logging_params.name}"
else:
dirpath = checkpoint_params["dirpath"]
dirpath = Path(dirpath).resolve()
if not Path(dirpath).exists():
try:
Path(dirpath).mkdir(parents=True, exist_ok=True)
except OSError as e:
print(
f"Cannot create a new folder. Check the permissions to the given Checkpoint directory. \n {e}"
)
_ = checkpoint_params.pop("dirpath")
checkpointers = []
monitor = checkpoint_params.pop("monitor")
for metric in monitor:
checkpointer = pl.callbacks.ModelCheckpoint(
monitor=metric,
dirpath=dirpath,
filename=f"{{epoch}}-{{{metric}}}",
**checkpoint_params,
)
checkpointer.CHECKPOINT_NAME_LAST = f"{{epoch}}-best-{{{metric}}}"
checkpointers.append(checkpointer)
return checkpointers
get_data_paths(data_cfg)
¶
Get file paths from directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_cfg |
dict
|
Config for the dataset containing "dir" key. |
required |
Returns:
Type | Description |
---|---|
tuple[list[str], list[str]]
|
lists of labels file paths and video file paths respectively |
Source code in dreem/io/config.py
def get_data_paths(self, data_cfg: dict) -> tuple[list[str], list[str]]:
"""Get file paths from directory.
Args:
data_cfg: Config for the dataset containing "dir" key.
Returns:
lists of labels file paths and video file paths respectively
"""
dir_cfg = data_cfg.pop("dir", None)
if dir_cfg:
labels_suff = dir_cfg.labels_suffix
vid_suff = dir_cfg.vid_suffix
labels_path = f"{dir_cfg.path}/*{labels_suff}"
vid_path = f"{dir_cfg.path}/*{vid_suff}"
print(f"Searching for labels matching {labels_path}")
label_files = glob.glob(labels_path)
print(f"Searching for videos matching {vid_path}")
vid_files = glob.glob(vid_path)
print(f"Found {len(label_files)} labels and {len(vid_files)} videos")
return label_files, vid_files
return None, None
get_dataloader(dataset, mode)
¶
Getter for dataloader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Union[SleapDataset, MicroscopyDataset, CellTrackingDataset]
|
the Sleap or Microscopy Dataset used to initialize the dataloader |
required |
mode |
str
|
either ["train", "val", or "test"] indicates which dataset config to use |
required |
Returns:
Type | Description |
---|---|
DataLoader
|
A torch dataloader for |
Source code in dreem/io/config.py
def get_dataloader(
self,
dataset: Union["SleapDataset", "MicroscopyDataset", "CellTrackingDataset"],
mode: str,
) -> torch.utils.data.DataLoader:
"""Getter for dataloader.
Args:
dataset: the Sleap or Microscopy Dataset used to initialize the dataloader
mode: either ["train", "val", or "test"] indicates which dataset
config to use
Returns:
A torch dataloader for `dataset` with parameters configured as specified
"""
if mode.lower() == "train":
dataloader_params = self.cfg.dataloader.train_dataloader
elif mode.lower() == "val":
dataloader_params = self.cfg.dataloader.val_dataloader
elif mode.lower() == "test":
dataloader_params = self.cfg.dataloader.test_dataloader
else:
raise ValueError(
"`mode` must be one of ['train', 'val','test'], not '{mode}'"
)
if dataloader_params.num_workers > 0:
# prevent too many open files error
pin_memory = True
torch.multiprocessing.set_sharing_strategy("file_system")
else:
pin_memory = False
return torch.utils.data.DataLoader(
dataset=dataset,
batch_size=1,
pin_memory=pin_memory,
collate_fn=dataset.no_batching_fn,
**dataloader_params,
)
get_dataset(mode)
¶
Getter for datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mode |
str
|
[None, "train", "test", "val"]. Indicates whether to use train, val, or test params for dataset |
required |
Returns:
Type | Description |
---|---|
Union[SleapDataset, MicroscopyDataset, CellTrackingDataset]
|
Either a |
Source code in dreem/io/config.py
def get_dataset(
self, mode: str
) -> Union["SleapDataset", "MicroscopyDataset", "CellTrackingDataset"]:
"""Getter for datasets.
Args:
mode: [None, "train", "test", "val"]. Indicates whether to use
train, val, or test params for dataset
Returns:
Either a `SleapDataset` or `MicroscopyDataset` with params indicated by cfg
"""
from dreem.datasets import MicroscopyDataset, SleapDataset, CellTrackingDataset
if mode.lower() == "train":
dataset_params = self.cfg.dataset.train_dataset
elif mode.lower() == "val":
dataset_params = self.cfg.dataset.val_dataset
elif mode.lower() == "test":
dataset_params = self.cfg.dataset.test_dataset
else:
raise ValueError(
"`mode` must be one of ['train', 'val','test'], not '{mode}'"
)
label_files, vid_files = self.get_data_paths(dataset_params)
# todo: handle this better
if "slp_files" in dataset_params:
if label_files is not None:
dataset_params.slp_files = label_files
if vid_files is not None:
dataset_params.video_files = vid_files
return SleapDataset(**dataset_params)
elif "tracks" in dataset_params or "source" in dataset_params:
if label_files is not None:
dataset_params.tracks = label_files
if vid_files is not None:
dataset_params.video_files = vid_files
return MicroscopyDataset(**dataset_params)
elif "raw_images" in dataset_params:
if label_files is not None:
dataset_params.gt_images = label_files
if vid_files is not None:
dataset_params.raw_images = vid_files
return CellTrackingDataset(**dataset_params)
# todo: handle this better
if "slp_files" in dataset_params:
return SleapDataset(**dataset_params)
elif "tracks" in dataset_params or "source" in dataset_params:
return MicroscopyDataset(**dataset_params)
elif "raw_images" in dataset_params:
return CellTrackingDataset(**dataset_params)
else:
raise ValueError(
"Could not resolve dataset type from Config! Please include \
either `slp_files` or `tracks`/`source`"
)
get_early_stopping()
¶
Getter for lightning early stopping callback.
Returns:
Type | Description |
---|---|
EarlyStopping
|
A lightning early stopping callback with specified params |
Source code in dreem/io/config.py
get_gtr_runner()
¶
Get lightning module for training, validation, and inference.
Source code in dreem/io/config.py
def get_gtr_runner(self) -> "GTRRunner":
"""Get lightning module for training, validation, and inference."""
from dreem.models import GTRRunner
tracker_params = self.cfg.tracker
optimizer_params = self.cfg.optimizer
scheduler_params = self.cfg.scheduler
loss_params = self.cfg.loss
gtr_runner_params = self.cfg.runner
model_params = self.cfg.model
ckpt_path = model_params.pop("ckpt_path", None)
if ckpt_path is not None and ckpt_path != "":
model = GTRRunner.load_from_checkpoint(
ckpt_path,
tracker_cfg=tracker_params,
train_metrics=self.cfg.runner.metrics.train,
val_metrics=self.cfg.runner.metrics.val,
test_metrics=self.cfg.runner.metrics.test,
)
else:
model = GTRRunner(
model_params,
tracker_params,
loss_params,
optimizer_params,
scheduler_params,
**gtr_runner_params,
)
return model
get_logger()
¶
Getter for logging callback.
Returns:
Type | Description |
---|---|
Logger
|
A Logger with specified params |
Source code in dreem/io/config.py
def get_logger(self) -> pl.loggers.Logger:
"""Getter for logging callback.
Returns:
A Logger with specified params
"""
from dreem.models.model_utils import init_logger
logger_params = OmegaConf.to_container(self.cfg.logging, resolve=True)
return init_logger(
logger_params, OmegaConf.to_container(self.cfg, resolve=True)
)
get_loss()
¶
get_model()
¶
Getter for gtr model.
Returns:
Type | Description |
---|---|
GlobalTrackingTransformer
|
A global tracking transformer with parameters indicated by cfg |
Source code in dreem/io/config.py
def get_model(self) -> "GlobalTrackingTransformer":
"""Getter for gtr model.
Returns:
A global tracking transformer with parameters indicated by cfg
"""
from dreem.models import GlobalTrackingTransformer
model_params = self.cfg.model
ckpt_path = model_params.pop("ckpt_path", None)
if ckpt_path is not None and len(ckpt_path) > 0:
return GTRRunner.load_from_checkpoint(ckpt_path).model
return GlobalTrackingTransformer(**model_params)
get_optimizer(params)
¶
Getter for optimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
Iterable
|
iterable of model parameters to optimize or dicts defining parameter groups |
required |
Returns:
Type | Description |
---|---|
Optimizer
|
A torch Optimizer with specified params |
Source code in dreem/io/config.py
def get_optimizer(self, params: Iterable) -> torch.optim.Optimizer:
"""Getter for optimizer.
Args:
params: iterable of model parameters to optimize or dicts defining
parameter groups
Returns:
A torch Optimizer with specified params
"""
from dreem.models.model_utils import init_optimizer
optimizer_params = self.cfg.optimizer
return init_optimizer(params, optimizer_params)
get_scheduler(optimizer)
¶
Getter for lr scheduler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
optimizer |
Optimizer
|
The optimizer to wrap the scheduler around |
required |
Returns:
Type | Description |
---|---|
LRScheduler
|
A torch learning rate scheduler with specified params |
Source code in dreem/io/config.py
def get_scheduler(
self, optimizer: torch.optim.Optimizer
) -> torch.optim.lr_scheduler.LRScheduler:
"""Getter for lr scheduler.
Args:
optimizer: The optimizer to wrap the scheduler around
Returns:
A torch learning rate scheduler with specified params
"""
from dreem.models.model_utils import init_scheduler
lr_scheduler_params = self.cfg.scheduler
return init_scheduler(optimizer, lr_scheduler_params)
get_tracker_cfg()
¶
Getter for tracker config params.
Returns:
Type | Description |
---|---|
dict
|
A dict containing the init params for |
Source code in dreem/io/config.py
get_trainer(callbacks=None, logger=None, devices=1, accelerator='auto')
¶
Getter for the lightning trainer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
callbacks |
list[Callback]
|
a list of lightning callbacks preconfigured to be used for training |
None
|
logger |
WandbLogger
|
the Wandb logger used for logging during training |
None
|
devices |
int
|
The number of gpus to be used. 0 means cpu |
1
|
accelerator |
str
|
either "gpu" or "cpu" specifies which device to use |
'auto'
|
Returns:
Type | Description |
---|---|
Trainer
|
A lightning Trainer with specified params |
Source code in dreem/io/config.py
def get_trainer(
self,
callbacks: list[pl.callbacks.Callback] = None,
logger: pl.loggers.WandbLogger = None,
devices: int = 1,
accelerator: str = "auto",
) -> pl.Trainer:
"""Getter for the lightning trainer.
Args:
callbacks: a list of lightning callbacks preconfigured to be used
for training
logger: the Wandb logger used for logging during training
devices: The number of gpus to be used. 0 means cpu
accelerator: either "gpu" or "cpu" specifies which device to use
Returns:
A lightning Trainer with specified params
"""
if "trainer" in self.cfg:
trainer_params = self.cfg.trainer
else:
trainer_params = {}
profiler = trainer_params.pop("profiler", None)
if "profiler":
profiler = pl.profilers.AdvancedProfiler(filename="profile.txt")
else:
profiler = None
if "accelerator" not in trainer_params:
trainer_params["accelerator"] = accelerator
if "devices" not in trainer_params:
trainer_params["devices"] = devices
return pl.Trainer(
callbacks=callbacks,
logger=logger,
profiler=profiler,
**trainer_params,
)
set_hparams(hparams)
¶
Setter function for overwriting specific hparams.
Useful for changing 1 or 2 hyperparameters such as dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hparams |
dict
|
A dict containing the hyperparameter to be overwritten and the value to be changed |
required |
Returns:
Type | Description |
---|---|
bool
|
|
Source code in dreem/io/config.py
def set_hparams(self, hparams: dict) -> bool:
"""Setter function for overwriting specific hparams.
Useful for changing 1 or 2 hyperparameters such as dataset.
Args:
hparams: A dict containing the hyperparameter to be overwritten and
the value to be changed
Returns:
`True` if config is successfully updated, `False` otherwise
"""
if hparams == {} or hparams is None:
print("Nothing to update!")
return False
for hparam, val in hparams.items():
try:
OmegaConf.update(self.cfg, hparam, val)
except Exception as e:
print(f"Failed to update {hparam} to {val} due to {e}")
return False
return True